首页> 外文OA文献 >What do generalized entropies look like? An axiomatic approach for complex, non-ergodic systems
【2h】

What do generalized entropies look like? An axiomatic approach for complex, non-ergodic systems

机译:广义熵看起来像什么?一种公理化的方法   复杂的非遍历系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Shannon and Khinchin showed that assuming four information theoretic axiomsthe entropy must be of Boltzmann-Gibbs type, $S=-\sum_i p_i \log p_i$. Here wenote that in physical systems one of these axioms may be violated. Fornon-ergodic systems the so called separation axiom (Shannon-Khinchin axiom 4)will in general not be valid. We show that when this axiom is violated theentropy takes a more general form, $S_{c,d}\propto \sum_i ^W \Gamma(d+1, 1- c\log p_i)$, where $c$ and $d$ are scaling exponents and $\Gamma(a,b)$ is theincomplete gamma function. The exponents $(c,d)$ define equivalence classes forall interacting and non interacting systems and unambiguously characterize anystatistical system in its thermodynamic limit. The proof is possible because oftwo newly discovered scaling laws which any entropic form has to fulfill, ifthe first three Shannon-Khinchin axioms hold. $(c,d)$ can be used to defineequivalence classes of statistical systems. A series of known entropies can beclassified in terms of these equivalence classes. We show that thecorresponding distribution functions are special forms of Lambert-${\cal W}$exponentials containing -- as special cases -- Boltzmann, stretched exponentialand Tsallis distributions (power-laws). In the derivation we assume trace formentropies, $S=\sum_i g(p_i)$, with $g$ some function, however more generalentropic forms can be classified along the same scaling analysis.
机译:Shannon和Khinchin表明,假设四个信息理论公理,熵必须是Boltzmann-Gibbs类型的,即$ S =-\ sum_i p_i \ log p_i $。在这里,我们注意到在物理系统中,可能会违反这些公理之一。对于非遍历系统,所谓的分离公理(Shannon-Khinchin公理4)通常无效。我们证明,当违反该公理时,熵采取更一般的形式,即$ S_ {c,d} \ propto \ sum_i ^ W \ Gamma(d + 1,1-c \ log p_i)$,其中$ c $和$ d $是缩放指数,$ \ Gamma(a,b)$是不完整的伽玛函数。指数$(c,d)$定义了所有相互作用和非相互作用系统的等价类,并明确地以其热力学极限来表征任何统计系统。如果前三个香农-欣钦公理成立,则由于两个新发现的定律必须满足任何熵形式,因此有可能进行证明。 $(c,d)$可用于定义统计系统的等价类。可以根据这些等价类对一系列已知的熵进行分类。我们证明相应的分布函数是Lambert-$ {\ cal W} $指数的特殊形式,其中包含-作为特殊情况-Boltzmann,拉伸指数和Tsallis分布(幂律)。在推导中,我们假设使用痕量强视法,$ S = \ sum_i g(p_i)$,具有$ g $的某些函数,但是可以根据相同的比例分析对更广义的形式进行分类。

著录项

  • 作者

    Thurner, Stefan; Hanel, Rudolf;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号